$$
\begin{aligned}
d_{i, j} &\leftarrow d_{i, j} + 1 \
d_{i, y + 1} &\leftarrow d_{i, y + 1} - 1 \
d_{x + 1, j} &\leftarrow d_{x + 1, j} - 1 \
d_{x + 1, y + 1} &\leftarrow d_{x + 1, y + 1} + 1
\end{aligned}
$$

[
\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}
]

$$
\chi^2 = \sum \frac{(O - E)^2}{E}
$$

$$
\chi^2 = \sum \frac{(|O - E| - 0.5)^2}{E}
$$